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Abstract

Analytical derivations of stress intensity factors (SIF's) for a multicracked plate can be com-

plex and tedious. Recent advances, however, in intelligent application of symbolic computation

can overcome these difficulties and provide the means to rigorously and efficiently analyze this

class of problems. Here, the symbolic algorithm required to implement the methodology de-

scribed in Part I is presented. The special problem-oriented symbolic functions to derive the

fundamental kernels are described, and the associated automatically generated FORTRAN

subroutines are given. As a result, a symbolic/FORTRAN package named SYMFRAC, capa-

ble of providing accurate SIF's at each crack tip, has been developed and validated.

Simple illustrative examples using SYMFRAC show the potential of the present approach

for predicting the macrocrack propagation path due to existing microcracks in the vicinity

of a macrocrack tip, when the influence of the microcracks' location, orientation, size, and

interaction are accounted for.
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- direction cosines between two local coordinate systems

- strain tensor

- offset of notch-microcracks system with respect to Y axis

- four roots of the characteristic equation

- Poisson's ratio

- far-field and total stress field, respectively

- components of stress in global coordinate system

- angle defining orientation of local coordinate system

- ngrmalized real variables

- Fourier transform of Airy stress function with respect to x variable
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- half crack length

- coefficients of strain-stress relationship (compliant matrix)

- normahzed radial (tip) distance

- auxihary functions

- mode-I and mode-II stress intensity factors

- Fredholm kernels

- normal traction at crack surface

- shear traction at crack surface

- Fourier variable

- position vector defining the origin of a local coordinate system

- components of the position vector rj

- displacement associated with the x and y coordinates, respectively

- weight function

- local and global coordinates

- kernel matrix

- functions of s in Fourier space (i.e., constants in x, y-real space)

- Young's modulus

- Airy stress function

- discrete auxiliary function

- loading vector

1 Introduction

The computer has become an indispensable tool for both engineering analysis and design.

Advanced computing techniques provide powerful tools for computationally-intense applications in

engineering. Symbolic computation specializes in the exact computation with numbers, formulas,

vectors, matrices, equations, and the like. Numerical computation, on the other hand, uses floating-

point numbers, and approximates computations to solve problems of practical interest. The two

approaches are complementary and, when combined into an integrated form, can be very powerful

for engineering applications.

Analyzing the interaction of microcracks analytically, as discussed in Part I (Binienda et al.

1992), involves extensive manipulation of complex mathematical expressions. To date, the method-

ology has been developed for analyzing multiple cracks within an isotropic material. A similar

methodology can be implemented for anisotropic and/or nonhomogeneous materials, and for com-

plex, nonstraight multicracked configurations. However, because of the complexities involved, it

is impossible for researchers to investigate this general problem without relying on the power of

symbolic computations.

Presented here is a symbolic manipulation package (SYMFRAC, from SYMbolic FRACture)

capable of providing both analytic derivation and FORTRAN code generation for n straight, fully

interacting cracks in an isotropic plate that is subjected to in-plane loading. The immediate benefits

that can be realized are (1) reduced tedium of manual derivation, (2) increased reliability of the

derived equations and, hence, the final analysis results, and (3) improved numerical efficiency and

accuracy for multiple interacting cracks.

This paper begins with a description of the associated symbolic algorithm and is followed by

subsequent sections describing in detail the three key steps involved in the underlying formulation

given in Part I (Binienda et al. 1992). It concludes with two numerical examples that illustrate

the major capabilities of SYMFRAC: (1) a four-crack problem in which three microcracks interact



with a larger notch and (2) a fully interacting multicrack problem, with two notches and eight

microcracks.

2 Computational Algorithm

The general theoretical formulation for a multicrack mixed boundary value problem has been

discussed in Part I (Binienda et al. 1992) and can be classified into four main steps: (1) the

derivation of the local stress equations for each crack in its respective local coordinate system, (2)

formulation of the total perturbation stress field for each crack, (3) formulation of the singular

integral system of equations, and (4) the solution for the stress intensity factors of this singular

integral system via the discrete auxiliary functions.

Each of these basic steps involve numerous, tedious intermediate steps; this suggests that sym-

bolic computations may be an attractive tool for automating the derivation and solution of this

class of mixed boundary value problems.

The required algorithm to accomplish such automation can be divided into the following 11

steps.

(1) Convert the governing equation,
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-_z4f(x, y) + cgx2i)y2 F(x, y) + -_y4F(x, y) = O (1)

into an ODE by Fourier transform; that is,

s4¢ - s2¢" + ¢"' = 0 (2)

(2) Solve the ODE. For the isotropic case, the roots of the characteristic equation are two identical

real roots; thus the general solution is

(3)

(3) Use the inverse Fourier transformation and the condition that F(x,y) must go to zero at

infinity, to obtain the following Airy's stress function:

and

F(x,y+) = _[(C, + C,y)_-I,%--z]

F(z,y-) = 1[(C3 + C4y)el°l% -;°z]

for y > 0 (4)

for y < 0 (5)

where Cj(j "- 1, ..., 4) are arbitrary functions of s.

(4) Find the stress, strains, and displacements through differentiating, applying a constitutive

relationship and integrating with respect to strain.

(5) Introduce auxiliary functions fl(x) and f2(z) such that

(6)

(7)

and

L(:_)= _[u+(x,o)- u-(:_,o)].

0 [o+(x,0)- o-(x,0)].f_(_) =

3



(6) Solvefor C1, C_, 6'3, and C4 in terms of the auxiliary functions fl(z) and f2(x) by using the

continuity conditions for a,u and tr**; that is,

%+(x,0) = ab(x,0)

_,+_(x, 0) = _;_(x, 0)

(8)

(9)

(7) Find the final form by substituting the local stresses in terms of the auxihary functions fl(z)

and f2(z), and integrate with respect to the Fourier variable.

(8) Find the total stresses

n--I

• tp

p=l

by using coordinate transformations,

rjx + xj cos _j - yj sin _pj = rpx + zp cos _p - Yv sin _p

(9)

(lO)

(11)

(10)

rjy -4- xj sin _j + Yi cos _i = rpy dr xp sin _p + Yn cos _v

and the stress transformations
#

(Yrz --" _lr_mz O'lm

where/31r,/_,_ are the direction cosines for the (xk,yk) and (xp,yp) coordinate systems.

Identify the Fredholm kernels (kerp) and normalize them, where p = 1,2, 3,4.

(11)

(13)

Apply a collocation technique and generate the FORTRAN subroutine for the discrete auxil-

iary function vector {G }:

{G} = [A]-'{7_} (14)

where [A] is a fully populated matrix of the coefficients obtained from the Fredholm kernels,

and {7¢} is the applied loading function.

Evaluate the stress intensity factors (SIF's).

2.1 Symbolic Algorithm for Local Stress Formulation

The general form of the Airy stress function F(x, y) for a plane problem is given in terms of the

four unknown coefficients C_ to C4 (see Eqs. (4) and (5)). Two of the four are dependent because

of the continuity conditions. The remaining two may be expressed conveniently in terms of the

auxiliary functions as shown in Part I (Binienda et al. 1992). Substituting C1 to C4, as described

in Part I into the stress equation for y > 0 or y < 0, the stress equations become

£/;tr_ = {s2[ z ,.t f_(t)yei.t if2(t)e.t
. oo aans 4anlsl + 4anslsl ]e-101u-,0_

- 21sl[z °' fl(t)ei't]e-I'ly-i'_:}dsdt (15)
4axllsl

/_' /__ -s2[ if2(t)yei't fl(t)Yei't if2(t)ei't]e-I'l_'-i'_}dsdt (16)a_,,- . { 4a,ls 4a,,Isl + 4a,,slsl



O'zy --

• ist
" _ ifdt)e'" le_l,lv_i, _rih(t)ye_"' f_(t)ye _'' +

• ,i/_(t)_'"
- (17)4a,,lsl

In Eqs. (15) to (17) the range of integration is -a < t < a for the coordinate variable and

-oo < s < oo for the Fourier variable. Integration with respect to the Fourier variable s can be

separated into a negative portion (-c]o, 0] and a positive portion [0, +oo). Then the variable of
integration can be substituted, with s = -s, and the order of integration switched such that all

integration is over the domain [0, +oo). Hence, the stress equations are

-.-...-,.,
a 4all 4an

ih(t)_-"+'=-_" y,(t)_-'_+_=-'''
+

4an 2an

4
is f 2( t )ye-,_-i,_+ TM s f l ( t )ye-SV-isz+ ist

m

4alx 4an

iA(t)e-'u-i'_+i" + fl(t)e-'U-i'_+ia }dsdt
4all 2a11

(_8)

o.uu = L_, fo ."_ ish(t)ye-O_+i,.-_,t_ +
s fl ( t )ye-,U+ i,x-i_t

41111

i f2(t)e-,V+;,_-i ; ish(t)ye-,,-i,,+ ','
+

4aal 4an

+ sfl(t)ye-'U-i'_+i" - if2(t)e-'Y-i'_+i"}dsdt (19)
4axx 4aal

O'zy ff fo ish(t)ye-'Y+i'=-i" isfl(t)ye-°Y+i'=-'a= o _{ 4all + 4all

i f a( t )e-OU+i,_-ia sh( t )ye-,y-i,=+i,,
u

2an 4an

- isfa(t)ye-'u-i'_+i" + ifa(t)e-°_-i'=+i" }dsdt (20)
4ala 2an

It is important to note that at this stage the function integrate in MACSYMA (MATHLAB

GROUP 1984) cannot be applied directly to perform the previous integration because of the oc-

currence of an infinite loop,. Instead, intermediate variables are introduced into the integrals and
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the following recursive forms are applied in a heuristic manner to actually perform the required

integration; that is,

I_ = e"ds where p = p(x,-y,t) (21)

and

I,, = _--_I,,__ for n = 2,3,... (22)

such that the result of the preceding integration (see Gradshteyn and Ryzhik 1980) is,

I,_ = (-1)" for n = 1,2,3,... (23)
p,,

For the isotropic case of n=l and 2:

1
I, = - (24)

-y -l- (x - t)i

Therefore, the resulting stresses become

(-y+(x-t)i) 2

1 /_' --2y 2 14,_aH o{f_(t)(t- x)[[y_ + (t- x)_]_ + y_ + (t- x)_]

y_ - (t - x) 2 2

- yf,(t)[[-_ __ _--_-x--_] 2 - y2 + (t - x) 21}dr

(25)

(26)

1 2y 2
]_ {f2(t)(t- x)[o'_ -- 4n'all ,,, iy 2 + (t- x)2] 2

y2 _ (t - z) 2
+ yfl(t) [_ ._ (_'_- _]2}dt

1
+ 1

u_+ (t- _)_J

(27)

: 2y _ 1{fl(t)(t _)[[y_+ (t _)_]_- y_ + (t _)_]O'z_- 4_Vall a -- -- --

. y2 _ (t - z)2
- yf2(t),3 .... }dt (28)ty + (t- x)212

The above evaluation of the Fourier integral is accomplished by invoking a single function called

ISTRESS, thus making the details of this section transparent to the user.



2.2 Symbolic Algorithm for Fredholm Kernels

As we showed in Part I (Binienda et al. 1992), prior to obtaining the Fredholm kernels, we

must compute the total stresses due to all cracks within the plate (see step (8), Eqs. (10) to (13)).

We accomplish this through both coordinate and stress transformations of all surrounding cracks

to a chosen jth crack as described by Eq. (10). This transformation and summation procedure is

continued until the total stress state (i.e., (javT) and T(ja=v)) at each crack surface has been found.

Given the total stresses, we obtain the final form of the normalized Fredholm kernels by performing

a variable transformation, (i.e., x=a_; t=ar; for -1_< _¢ and r _<1) and applying crack boundary

conditions (i.e., y -- 0).

Hence, for the case of n cracks the whole system of singular integral equations is

T 1 {f_l 1 ker lflldr + f1_1 ker 2fmdr
,a=y = _ (29)

1 1

+'" + fl-l kerlf(,,-l)ldr + fl-l ker2f(.-l)2dr + _ f_-l ,1_-_dr}

a T - _ {f_l 1 kerafndr -t- f_l 1 ker4f12dr
- _ 4an (30)

+... + f l i ker3ff,_,)idr + fl ker4f(__,)2dr + _ fl_ 1 -/___dr}

where the four distinct kernels (i.e., kerp for p=1,2,3,4) are shown in the Appendix of Part I

(Binienda et al. 1992). These four kernels can be translated into FORTRAN code directly through

the use of a built-in command in MACSYMA. The resulting generated code is given in Appendix

A at the end of this paper. Note that these kernel functions are already modified by the associated

Lobatto-Chebyshev parameters discussed in the next section.

2.3 Solution of Discrete Auxiliary Functions via the Collocation Tech-

nique

The Lobatto-Chebyshev collocation integration technique is used to transform the preceding

system of singular integral equations (represented by Eqs. (29) and (30)) into a system of alge-

braic equations. These equations combined with the single valued conditions, described in Part I

(Binienda et al. 1992), result in the following 2rim system of algebraic equations:

w,.f,,_(_,-,)
' 7r(r, - _=) + ker 1/21 (7"r)W, 4- ker =f2=(r,)w,

• ..+ ker,f,,,(r,)w, + ker2f,,2(r,)w,] = 4a,,(,a/y)

for z = l,...,m- 1 (31)

,___lfw,f,2(_,)
'Tr(_,-_,) + ker3A,(r,)w, + ker 4A2(r,)w,

• .. + kersA,(r,)w, + ker,A_(r,)w,] = 4a,,(,a_ T)

for z = 1,...,m- 1 (32)

_'-_,[ker lf2,(Vr)Wr + ker2f22(r,.lwr + r(r,- _z)

• .. + ker,f_,(r, lw, + ker2f,2(r, lw, l = 4aH(2a= T)
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for z = 1,...,m- 1

_[ker3f21(r.)w. + ker4f22(r.)w. + r(r. - G)

• .-+ keraf,,l(r,)w, + ker,f,,(r,)w,] = 4a,l(,a[_)

for z = l,...,m-1

(33)

(34)

m

_[ker,fn(rr)w, + ker2f12(rr)wr + ker,A,(rr)W,

w,f,_, (r,) 7

+ ker 2f22(r,)w, +"-+ 7r(r, - _,)] = 4a"('_cr_u)

for z= 1,...,m-1 (35)

m

r=l

w, fn2(rr)] = 4a,,(,,(rT)
+keraf_2(r,)w_ +..- + rr(r, - G)

for z = 1, ..., m- 1 (36)

m

y_fH(r,.)w,. =0 (37)
r--|

m

= o (38)
r=l

__,f2,(r_)wr =0 (39)
r=1

m

_ h2(_p)wp = 0 (40)
p=l

___f_,(r_)w, =0 (41)
r=l

__. f_2(r,.)w,. = 0 (42)
r=l

where m is the number of collocation points and r,, w, and _z are the associated abscissae, weights,

and collocation points described in Part I (Binienda et al. 1992).
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The aboveequationscanbe rewritten compactly by using matrix notation; that is,

[A]{G} = {T_) (43)

where the kernel matrix [A] is shown in schematic form in Appendix B and the FORTRAN code to

assemble this matrix is given in Appendix C. Similarly, the associated FORTRAN code to assemble

the loading vector {TO.} is also shown in Appendix C.

Although, only two key FORTRAN subroutines have been shown here, an entire FORTRAN

code named SYMFRAC has been developed. This code has the capability to calculate the stress

intensity factors at each crack tip as defined in Part I (Binienda et al. 1992) for an isotropic

plate subjected to an in-plane stress field with n cracks of arbitrary geometry. This code has been

employed to give the numerical results in this paper and in Part I (Binienda et al. (1992)).

3 Numerical Application

In this section two problems of a cracked, brittle infinite isotropic plate are studied. The first

problem is composed of a notch and three interacting microcracks. We will obtain mode-I and mode-

II SIF's for the inner crack tips under two loading cases: normal and shear far field stress states.

The geometry of this problem lacks any symmetry and represents a physical problem involving the

influence of a cloud of microcracks on the fracture zone of a major notch. The second problem

represents a symmetric crack configuration composed of two interacting sets of a notch and cloud of

microcracks similar to problem 1. Here, however, each notch is associated geometrically with four

interacting microcracks. This problem, which is also physically possible, illustrates various cases of

propagation of two major notches that are influenced by their mutual interaction and, in addition,

by the existence and interaction of a cloud of microcracks in front of these notches. Symmetry with

respect to the origin of the global coordinate system is assumed in order to simplify the graphical

reporting of SIF's obtained for all inner and some outer crack tips.

Macroscopically, the extension of the notch can be simulated through the connection with a sur-

rounding microcrack. The specific microcrack involved, however, depends on the loading conditions

and crack interaction effects (which are dependent upon the particular location, size and orientation

of the surrounding microcracks). After identifying this specific microcrack we can assume that the

microscopic extension of all cracks will occur in a self-similar manner. Consequently, the fastest

growing microcrack will connect first with the notch, to create a large kinked or branched macro-

crack (notch). The criterion for microcrack propagation is assumed to be represented by a critical

SIF value. For the sake of illustration, let us also assume that the total critical SIF is a constant

material property such that the maximum total SIF obtained by using mode-I and mode-II of the

SIF's (kl and k2) normahzed with respect to the far field stress (a_p) and _r_'. Thus for the jth

crack tip,

k{otol = _/[(_)2 + (_)_],n_ (44)

is used as a crack selection criterion for propagation.

Clearly, alternative criteria for crack propagation can be selected; therefore to maximize the

future utility of the present results, the SIF's are reported separately. Note, that the objective

of these examples is not to examine the validity of a particular criterion, but merely to illustrate

qualitatively the capabilities of SYMFRAC.



3.1 Interaction of One Notch With Three Microcracks

Consider the problem of the extension of a horizontal notch under two far field loading conditions;

that is, a normal and a shear stress. Assume that within the fracture zone of the central notch, a

cloud of microcracks has developed due to localized flaws, grain boundaries, and�or other fabrication

and material factors. For the sake of simplicity, consider only three microcracks that are situated

radially with respect to a horizontal notch, as shown in Fig. 1. The plate is subjected to the

previously mentioned two loading conditions: Case 1 -- a normal far field stress, and Case 2 -- a

shear far field stress.

3.1.1 Case 1: Normal stress, cryy

The variations of kl and k2 for the inner crack tips as functions of the normalized distance

d is shown in Figs. 2 and 3. The distances dz2, d13, and d14 measured between the inner tips

of the notch and microcracks 2, 3, and 4, respectively, are taken to be equal to each other (i.e.,

d = d12 = d13 = d14), and they are normalized with respect to half the notch length, al. The

associated crack lengths, normalized with respect to al, are al = 1 and a2 = a3 = a4 = 0.1.

Figures 2 and 3 illustrate the mutual influence of the notch and microcracks on the mode-I

and mode-II SIF's, respectively. Note that the significant influence of the notch on the SIF's of aLl

microcracks begins once d < 0.1; however the notch continues to control (in that it will propagate in

a self-similar manner), provided that the initial radial (tip) distance d of all microcracks is greater

then 0.03. If d < 0.03, the mode-I SIF for crack 3 (oriented at 45 °) becomes the largest, (see

Fig. 2) Similarly, mode-II SIF for crack 3 dominates for all distances d, but in general it is much

smaller than mode-I SIF's. The total SIF is the largest for crack 3 when d is approximately less

then 0.075; therefore the 45 ° crack will grow to connect with the notch such that it will become

a kinked macrocrack. It should also be noted that for this loading condition when d approaches

infinity, mode-I SIF asymptotically becomes v_COS _0 and mode-II SIF becomes v/_SinOcosO.
Now consider the influence of the size of inclined microcracks (i.e., cracks 3 and 4). It can be

observed from Figs. 4 and 5 that the length of microcrack 3 will accelerate self-similar crack propa-

gation of the horizontal notch (due to a maximum kl) until as becomes larger than 0.95, whereupon

ktotat of crack 3 dominates. Thus, kinking will occur in the direction of crack 3. Alternatively, Figs.

6 and 7 show that self-similar extension of the notch is independent of the size of crack 4, the 90 °

crack. In fact, Fig. 6 shows that crack 4 shields the notch by reducing its SIF's once a4 > 0.8.

Note, that in Figs. (4) to (7) the centers of the microcracks are maintained at r2 = r3 = r4 =1

(where rj = dj + aj ), while the length of the particular crack under consideration varies from 0 to

1 and the size of the other microcracks remain constant at aj = 0.1.

3.1.2 Case 2: Shear stress, crxv

Next, a similar parametric study is conducted for the case when a far field shear stress is applied

to the plate. As presented previously the variation of kl and k2 with respect to d for the notch as

well as all three microcracks is shown in Figs. 8 and 9, respectively. Clearly, the notch will grow

in a self similar manner under mode-II for most values of d; however, the notch may kink in the

direction of crack 3 if d is very small. The trend for mode-II, shown in Fig. 9, illustrates that for

small values of d the SIF's of cracks 2 and 4 are reduced due to shielding effects. The dominant

mode of fracture for the notch is mode II when d > 0.03.

Figures 10 and 11 show the mode-I and mode-II SIF's for the inner crack tips when the size of

crack 3 is increased, while the centers of all other microcracks are held constant at rj = 1. Results
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indicate that for all lengths of crack 3, even those very large, the notch would not kink, but rather

grow in a self-similar manner under mode-II conditions. Conversely, the SIF's calculated when the

size of crack 4 (i.e., 90 °) increased ( see Figs. 12 and 13), indicate that the notch will grow (1) in

a self-similar manner under mode-II conditions when a4 < 0.63; (2) will kink in the direction of

crack 4 when 0.63 < a4 < 0.95 under mixed-mode conditions; or (3) will propagate once again in a

self-similar manner, but now predominantly under mode-I, when a4 > 0.95.

3.2 Interaction of Two Notches With Eight Microcracks

Consider the problem of two horizontal microcracks, possessing sharp notches, embedded in a

plate parallel to the X-axis (see Fig. 14). The plate is subjected to a normal stress arv at infinity.

Furthermore, assume that within the fracture zone of the notches, two clouds of microcracks have

developed due to localized flaws, grain boundaries, and/or other fabrication and material factors.

For the sake of simplicity, consider only four microcracks associated with each notch, such that

they are situated radially with respect to each notch as shown in Fig. 14. The orientations of the

microcracks within each cloud are 0 °, 30 °, 60 °, and 90 °, and the radial tip distance between the

notch and its associated cloud of microcracks is d.

The second parameter characterizing the geometry of the multiple crack system is A, which

represents the offset of the system with respect to the global vertical axis Y. For the case of A > 0,

the lower system of cracks (i.e., notch 1 and microcracks 3,4,5, and 6) is shifted to the right of

the vertical axis, whereas the upper system (notch 2 and cracks 7,8,9, and 10) is shifted to the

left. Note: The origin of the global coordinate system X and Y is always taken to be the point of

symmetry of the crack configuration. In this way the presentation of the results can be simplified;

however, this in no way implies any restriction, due to the symmetry, on the calculation of the

SIF's. Finally, the parameters d, A, and the half crack lengths aj (j = 2, 3, 4, ..., 10) are normalized

with respect to the half notch length ax (where al=a2).

For convenience, the location of each crack's local coordinate system (i.e., center of the crack)

is taken to depend upon the tip distance d, the offset A, and the half crack length aj. Hence, the

centers of notches 1 and 2 are

and

rlx = _ - al (45)

r,v = -(d + a6) (46)

r2x = -rlx (47)

r2r = -rlr (48)

and the centers of microcracks 3 through 6 and their counterpart microcracks (7 to 10) are

rsx = _ + (d + aj) cos _0j (49)

rjv = rag + (d + as)sin _j (50)

r(13_j)X = --rjX (51)

rOs_j)r = -r jr (52)

where rjx and rjy are the X and Y components, respectively, of the vector between the origin of

the global and local coordinate systems and j =3,4,...,10.

11



3.2.1 Influence of crack tip distance d

Consider the case when al = a2 = 1, the offset A is equal to 0.1', and the half length of each

microcrack aj = 0.1 (where j = 3,4, ..., 10), and d varies from 0 to 0.5. The resulting inner SIF's

kl and k2 (representing mode I and mode II), are shown in Figs. 15 and 16, respectively. From

examining the strength of kl and k2, it is clear that for all d values mode I is dominant and for

d > 0.025 the inner notch tip would propagate in a self-similar manner. However, for d < 0.025, the

kl value for the 30 ° microcracks exceeds all other kl values, thus indicating propagation of the 30 °

microcracks and possible connection with the inner tip of the notch, thereby creating a macroscopic

kinked crack. Although mode II (see Fig. 16) is significantly smaller in magnitude relative to mode

I, and therefore does not play a role in the propagation of the various cracks, it is interesting to

note that for d > 0.025 the 90 ° microcracks have a maximum k2, whereas for d < 0.025 the 60 °

microcracks do. Also, as expected when d approaches 0.5 (i.e., 1/4 of the notch length) the influence

of the microcracks on the kl of the notch is minimal. Clearly there are two competing mechanisms:

the first reduces kl because of crack shielding (observed at high d values), and the other increases kl

at small d values thereby simulating an increase in damage density at the notch tip that promotes

crack propagation.

3.2.2 Influence of offset

Here, as in the previous case, al = a2 = 1 and aj = 0.1 for j = 3,4, ...10; but now d is held fixed

at 0.1 while _ is varied from -0.5 to +0.5. As before, the inner SIF's (kl and k2) are shown versus R in

Figs. 17 and 18. Note, that all cases in which microcrack overlap occurs (i.e., -0.2 < R < 0.15) have

been skipped. As in the previous section, two primary effects, one dealing with the "density" of the

damage zone at the crack tip and the other with shielding are observed in Figs. 17 and 18. Clearly,

in Fig. 1? as _ approaches -0.2 from the left, the "density" of the damage zone (characterized by the

number of microcracks per unit length in front of the notches) increases, consequently increasing

the strength of kl. The second effect, again referring to kl in Fig.17, is attributed to the shielding

for R > 0.15 in that each notch shields the other as well as their associated cloud of microcracks.

Again, although mode II values are smaller than those of mode I, it is interesting to note that k2

of the notch becomes maximum when shielding occurs (i.e., 0.15 < A < 0.5).

3.2.3 Influence of microcrack lengths a4 and a5

Finally, the lengths of inclined cracks (e.g., 30 ° and 60 °) are examined. Here, s is chosen to avoid

crossing of the inclined crack with either notch. For example, consider the case in Figs. 19 and 20

where al = a2 = 1.0, _ = 0.8, d = 0.1, and a3 = as = a6 = 0.1 while a4 varies. Similarly, in Figs.

21 and 22 al = a2 = 1.0, _ = 1.0, d = 0.1, and as = a4 = a6 = 0.1 as as varies. In these figures

(Figs. 19 to 22) in addition to all SIF's associated with the inner crack tips, the SIF's associated

with the outer crack tips of the notches and the varying inclined microcracks are shown.

Comparison of Figs. 19 and 20 shows that mode I once again dominates. Therefore, let us focus

our attention on the mode-I SIF for the outer tip of the notch. It is apparent that kl=l for values

of a4 < 0.2, thus indicating no crack interaction at this tip and propagation away from the damage

zone. However, when a4 > 0.2, kl for the outer crack tip dramatically drops off due to shielding by

the 30 ° inclined microcrack associated with the opposite notch. Now focusing our attention on the

kl associated with the inner tip of the 30 ° inclined microcrack, we see that for a4 > 0.2 the present kl

is maximum, thus indicating propagation of the inclined microcrack towards the associated notch;

hence the potential kinking'of the inner notch tip. Figure 19 illustrates the importance of the initial
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damageconfiguration and its impact on the mechanism of crack propagation.

Comparing Figs. 21 and 22, which are associated with the case where the two notches are

exactly aligned as shown in the inserts, we observe for the first time the potential dominance of

mode-II SIF's. When as < 1.2, both inner and outer notch tips are shielded because kl < 1.0.

However, the inner notch tip SIF is higher than the outer tip SIF because of the interaction of the

associated cloud of microcracks. Some additional shielding of the outer notch tip occurs when the

length of the 60 ° microcrack is increased up to approximately 0.4.

4 Summary and Conclusion

The symbolic algorithm and key FORTRAN subroutines for constructing and calculating the

SIF's, with the singular integral equation technique, for a multicracked mixed boundary value prob-

lem have been presented. This work has resulted in the development of special problem-oriented

symbolic functions (e.g., ISTRESS) running under MACSYMA that simplify and automate the

derivation process. Also MACSYMA's automatic FORTRAN generation capability has been uti-

lized to produce the Fredholm kernel subroutines that constitute the core of the resulting FORTRAN

portion of SYMFRAC.

The accuracy of the present technique was confirmed with available solutions in the literature

for a two interacting crack problem shown in Part I. Also, two fully interacting multicrack problems

were studied here to illustrate the capabilities of SYMFRAC.

Numerous observations where discussed using a simple crack propagation criterion. For example,

(1) a notch-like crack can change its propagation direction (kink or branch) through connection with

pre-existing microcracks; (2) the notch may propagate either toward or away from the surrounding

cloud of microcracks; (3) two potential competing effects exist -- shielding, which reduces the SIF's,

and damage density, which increases the SIF's. In all of the preceding examples, results depend on

the size, orientation, and distribution of the interacting cracks. Thus, the most important conclusion

demonstrated is that the current damage configuration and the loading history dictate the future

damage growth.

The power and usefulness of SYMFRAC is apparent in that the size, orientation and distribution

of n fully interacting cracks in an isotropic plate can be studied. Furthermore, the methodology has

now been established so that extension to more complex problems, in which anisotropic materials,

kinked and branch cracks, and/or non-homogeneous materials are addressed, is straight-forward.

Finally, it is apparent that the rigorous symbolic development of the system of singular integral

equations and the associated automatic FORTRAN implementation is responsible for the speed

and accuracy of the numerical calculations.
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Appendix A - FORTRAN Code for the Discrete Fredholm Kernels

* Calculate krl kr2 kr3 and kr4

do 320 m= 1,4

do 310 k=l,ncr

do 311 l=l,ncr

if (k .NE. l) then

r2x=rx(k)

r2y=ry(k)

gf2=gf(k)
a2=al(k)

rlx=rx(1)

rly=ry(1)

gfl=gf(l)

al=al(1)

gh=gf2-gfl

pl=(r2y-rly)*dsin(gfl)+(r2x-rlx)*dcos(gfl)

p2=(r2y-rly)*dcos(gfl)-(r2x-rlx)*dsin(gfl)

do 78 i=l,n-1

do 79 j = 1 ,n

plala2 = -pl +al*gt(j)-a2*dcos(gh)*gc(i)

p2a2 = p2+a2*dsin(gh)*gc(i)

ww = p2a2**2+plala2**2

wwm = plala2**2-p2a2**2

if (m .EQ. 1) then

part1 = 2*dcos(2*gh)*plala2*p2a2**2-dsin(2*gh)*p2a2*wwm

part1 = partl/ww**2

part2 = (-dsin(2*gh)*p2a2-dcos(2*gh)*pl al a2)/ww

krl((k-1 )*n+i,(1-1 )*n+j )=(al/pi)*(part 1 +part2 )*w(j)

else

if (m .EQ. 2) then

partl= dcos(2*gh)*p2a2*wwm+2*dsin(2*gh)*plala2*p2a2**2

partl = partl/ww**2

kr2((k-1 )*n+i,(l-1 )*n+j)= (al/pi)* part 1*w(j)
else

if (m .EQ. 3) then

partl = -dcos(2*gh)*p2a2*wwm-2*dsin(2*gh)*plala2*p2a2**2

partl = partl/ww**2

part2 = (2*dsin(gh)**2* p2a2 +dsin(2*gh)*p 1 al a2) /ww

kr3((k-1 )*n+i,(1-1 )*n+j)=(al/pi)* (part 1 +part 2)*w(j)
else

partl = 2*dcos(2*gh)*plala2*p2a2**2-dsin(2*gh)*p2a2*wwm

partl = partl/ww**2

14



part2 = plala2/ww
kr4((k-1)*n+i,(1-1)*n+j )=(al/pi)* (part1+ part2)*w(j)
end if
end if
end if
79continue
78continue
end if
311continue
310continue
320continue
***************************************************
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Appendix B - Schematic Form of Kernel Matrix [A] and Load-

Vector {R}

A _.

t o sh _1__h _h
0 t ,h sh _h ,h

8321841 0 t 833843
sh ,], 4_ sh t o

1 2
1 2 1 S2n2 8n 3 8n 38nl 8nl Sn2

4 833 44 832 8n 2 8n 3831 8nl

,_,. sk
4. ,_.
s_. s_.
4. ,_.

t 0

0 t
2nm*2nm

where

t

w 1 Wm

7r(rl--_l ) "'" _r(Tm--_l)

w 1 Wm
r(_'l--_m_l) "'" 7r(rm--_m-1)

W 1 ... Wm
m,m

Wl ki( T1, El, rx. , rzb , ... ) ..o Wmki( Tm , El, rz. , rxb , . "")

wlki('rl,_m_l,rz.,rz,,...) ... wmki(rm,_m-l,rz.,rz,,...)

0 ... 0

where i = 1, ...4; a, b E 1, ...n; and a # b.

m,m
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where

{R} =

T i --

( T 1

0 *1

T 2

O-2

T n

i,a"

_ o .a.

"ZII

"Z1J

°_

• zy j

yy

yy
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Appendix C - FORTRAN Listing for Assemblage of Kernel Matrix
[A] and Load Vector {a}

The FORTRAN code for matrix [A] is

* Calculate the diagonal elements of matrix [A]

do 305 k=0,(2*ncr-1)

do 50 j=l,n

do 40 i=l,n-1

a(k*n+i,k*n+j)'-w(j)/(pi*(gt(j)-gc(i)))

40 continue

a( (k+ 1 )*n,k*n+j) = w (j)

50 continue

305 continue
****************************************************

* Combine krl,kr2,kr3 and kr4 to calculate matrix [A]

* Input krl kr2 kr3 and kr4 to [A]

do 350 k-0,ncr-1

do 351 l=0,ncr-1

if (k .NE. l) then

do 352 i=l,n-1

do 353 j=l,n

a(2*k*n+i,2*l*n+j)=krl (k*n+i,l*n+j)

a(2*k*n+i,2*l*n+n+j) =kr2(k*n+i,l*n+j)

a(2*k*n+n+i,2*l*n+j)=kr3(k*n+i,l*n+j)

a(2*k*n+n+i,2*l*n+n+j)=kr4(k*n+i,l*n+j)

353 continue

352 continue

end if

351 continue

350 continue
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The FORTRAN codefor matrix [R] is

************************_**************** _** _*******

* Calculation of the right hand side of the systems equations R
,

****************************************************

do 370 i=l,ncr

gsyiyi(i)=gs0xx*dsin(gf(i))**2+gs0yy*dcos(gf(i))**2

gsyiyi(i) =gsyiyi(i)-gt0xy* dsin( 2* gf(i) )

gtxiyi(i)=-(gs0xx-gs0yy)/2* dsin(2* aft(i))+gt0xy* dcos( 2* gf(i))

pixi(i)=-gsyiyi(i)

qixi(i)=-gtxiyi(i)

370 continue

do 380 k=0,ncr-1

do 381 i=l,n-1

R(2*k*n+i)=-4*al l*qixi(k+l)
381 continue

380 continue

do 382 k=0,ncr-1

do 383 i=l,n-1

R(2*k*n+n+i) =-4*a I I*pixi(k+ 1 )
383 continue

382 continue
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